Barrier subgradient method
نویسنده
چکیده
In this paper we develop a new primal-dual subgradient method for nonsmooth convex optimization problems. This scheme is based on a self-concordant barrier for the basic feasible set. It is suitable for finding approximate solutions with certain relative accuracy. We discuss some applications of this technique including fractional covering problem, maximal concurrent flow problem, semidefinite relaxations and nonlinear online optimization.
منابع مشابه
Solving the Master Linear Program in Column Generation Algorithms for Airline Crew Scheduling using a Subgradient Method
A subgradient method for solving large linear programs is implemented and analyzed in a column generation framework. A performance comparison of the implementation is made versus the commercial linear programming solver XPress. Computational results from tests using data from airline crew scheduling, in particular crew rostering, show that the method performs very well in a column generation sc...
متن کاملA new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کاملProximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems
In this paper, we introduce a stochastic projected subgradient method for weakly convex (i.e., uniformly prox-regular) nonsmooth, nonconvex functions—a wide class of functions which includes the additive and convex composite classes. At a high-level, the method is an inexact proximal point iteration in which the strongly convex proximal subproblems are quickly solved with a specialized stochast...
متن کاملConvergence Rates for Deterministic and Stochastic Subgradient Methods Without Lipschitz Continuity
We extend the classic convergence rate theory for subgradient methods to apply to non-Lipschitz functions. For the deterministic projected subgradient method, we present a global O(1/ √ T ) convergence rate for any convex function which is locally Lipschitz around its minimizers. This approach is based on Shor’s classic subgradient analysis and implies generalizations of the standard convergenc...
متن کاملStochastic Subgradient Methods
Stochastic subgradient methods play an important role in machine learning. We introduced the concepts of subgradient methods and stochastic subgradient methods in this project, discussed their convergence conditions as well as the strong and weak points against their competitors. We demonstrated the application of (stochastic) subgradient methods to machine learning with a running example of tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 127 شماره
صفحات -
تاریخ انتشار 2011